
1

SPARK-PL: Data Layers
Alexey Solovyev

Abstract

In this tutorial the concept of data layers is explained.

Table of Contents
1. Data layers in SPARK ... 1
2. Data layers in SPARK-PL .. 1
3. Working with grid values ... 2
4. Global grid methods .. 3

1. Data layers in SPARK
A data layer is one of key components of SPARK. Roughly speaking, it defines a function on a space, that
is, it assigns a numerical value to each point in a space.

2. Data layers in SPARK-PL
There is one type for working with data layers in SPARK-PL called 'grid'. Generally, all data layers in a
model should be available for all agents, so it is convenient to have a global variable for each data layer.
In this case, the declaration of a new data layer is very simple

 global data-layer : grid

Globally defined data layer (grid) variables are treated in a special way in SPARK-PL: if there is no
initialization then a default initialization will be created. This default initialization creates a grid in a space
and its dimension equals to the integer dimension of the space.

Another way to create a grid is to use 'create-grid' command. This command has three arguments: name
of a new grid (this name can be used to get a reference to a grid from any part of a model, for example
in the case when there is no global reference to a grid), x dimension of a grid, y dimension of a grid. As
always in SPARK-PL, x and y could be non-integer in which case they will be rounded toward zero.

Note: in the current implementation only grids declared as global variables can be visualized during model
simulation process; if you are using 'create-grid' command to initialize a globally defined grid then the
name argument should be the same as global variable's name.

Remember that whenever you define a global variable of type 'grid' and do not provide an initialization
for it, then a default initialization will be always created. For example, in the code below two grids will
be created

model Model

space StandardSpace -10 10 -10 10 true true

SPARK-PL: Data Layers

2

; A default initialization is created for this
; grid which is equivalent to the command
; create-grid "data-layer" 20 20
global data-layer : grid

to setup
 data-layer = create-grid "data" 10 10

 ; Now the global variable 'data-layer' contains
 ; a reference to a 10 by 10 grid called "data".

 ; If the name "data-layer" were used in the previous line,
 ; then an error would occur during runtime
 ; because all data layers should have unique names
 ; and there is already one grid called "data-layer"
end

In this example two grids will be created in the model. One of them called "data" is available through a
global variable 'data-layer'. Another grid called "data-layer" can be accessed using a command

 get-grid "data-layer"

This command returns a reference to a grid with the given name. Note that only one of these two grids
can be visualized during runtime: "data-layer" grid because it has the same name as a global variable (this
issue will be resolved in further SPARK-PL releases).

It is convenient to use 'create-grid' as an initialization command

 global data = create-grid "data" 11 2

3. Working with grid values
A method 'set-value' sets the same value in all grid entries. It has one argument: a value to be set. There
are several methods for working with local grid values. A method 'value-at' returns a value from a grid
entry corresponding to a specific point in a space. To set value at a specific point, use 'set-value-at' method.
There is also a method 'add-value-at' which adds a given value to the value at a specific point.

 ; all grid entries will be 1
 data.set-value 1

 ; get a value at a point [2, 3, 0]
 ; (the third component of a vector is ignored here)
 var value = data.value-at [2, 3, 0]
 var new-value = value * value

 ; set a new value at a point [2.4, 1, 0]
 data.set-value-at [2.4, 1, 0] new-value

 ; add a number to a value at a point [2, 3, 0]
 data.add-value-at [2, 3, 0] value

SPARK-PL: Data Layers

3

Of course, all these methods are accurate up to the resolution of a grid. So the following commands often
do the same things

 data.set-value-at [1.02, 2.5, 0] 0.1
 data.set-value-at [1.01, 2.53, 0] 0.1

Agents can work with data layers in a more convenient way. For agents it is often required to know a
value or to set a value at the same position at which they are located. Of course, it is always possible to
do so using 'value-at', 'set-value-at' methods with agent's position but there is a shorter way to do this.
There are methods 'value-here', 'set-value-here', 'add-value-here' which automatically use agent's position
for working with data values. Of course, only space agents can use these methods.

agent SomeAgent : SpaceAgent

to step
 var data-here = data.value-here
 var new-data = data-here * 4 + 5

 data.set-value-here new-data

 data.add-value-here 0.5
end

Instead of 'value-here' and 'set-value-here' methods, it is more convenient to use the field 'value' of a grid.
You can work with this field as with a usual variable. The following example does the same thing as the
previous one.

to step
 data.value = data.value * 4 + 5.5
end

4. Global grid methods
By global methods I understand methods which affect a whole grid. One global method was already
introduces: 'set-value' method.

The method 'total-value' returns a sum of all values in a grid. There is a command counterpart of this
method called 'sum' which takes one argument: a grid.

 var total-data = data.total-value
 var total-data2 = sum data

 if total-data == total-data2
 [
 print "I'm not surprised"
]

There is a variation of the 'total-value' method called 'total-value-in-region'. This method has four
arguments which specify a region in which a data should be summed up.

SPARK-PL: Data Layers

4

 var value-in-rectangle =
 data.total-value-in-region x-min x-max y-min y-max

Methods 'max' and 'min' return maximum and minimum values stored in a grid respectively.

 var max-value = data.max
 var min-value = data.min

Method 'multiply' multiplies all grid values by a given number. This method has an alias 'evaporate' which
reflects one common application of this method. Also there is a command 'evaporate' with one argument
(a grid) which does the same thing, and there is an operator '*=' with a grid on the left and a number on
the right which is equivalent to the 'multiply' method.

 data.multiply 2
 data.evaporate 0.6
 evaporate data 0.3
 data *= 0.99

Method 'diffuse' performs a diffusion operation on a grid. It has one argument: a diffusion coefficient.
There is a command 'diffuse' with two argument which does the same thing.

 data.diffuse 0.5
 diffuse data 1

This method works as follows. Each data layer cell gives equal shares of (coefficient * 100) percents of
its value to its eight neighbors. This diffusion coefficient should be between 0 and 1 for a well-defined
behavior.

