
1

SPARK-PL: Attributes and User
Interface

Alexey Solovyev

Abstract

Classes, methods, and fields can have special attributes. Main SPARK-PL attributes are
introduced.

Table of Contents
1. SPARK-PL Attributes .. 1

1.1. Introduction ... 1
1.2. @chart attribute ... 2
1.3. @parameter attribute ... 2
1.4. @dataset parameter ... 2
1.5. @external attribute ... 3
1.6. @step attribute ... 3
1.7. @tick attribute ... 6
1.8. @observer attribute ... 6

1. SPARK-PL Attributes
1.1. Introduction

Attributes in SPARK-PL are special declarations that can be applied to global variables, methods, or types
(agents and models). Each attribute specifies a role of a global variable (method, etc.) in the SPARK user
interface or the role in SPARK itself. For instance, in the SPARK interface some model variables can be
parameters, other variables can be plotted as charts.

All attributes have the following syntax

@attribute-name(parameter1 = value1, parameter2 = value2, ...)
global some-variable
; to some-method
; agent some-agent
; model some-model

Each attribute is declared immediately before a global variable declaration. Each attribute has name and
several parameters. Parameters can have different values: strings or numbers. All parameter values should
be constants, it is not possible to use variables in the parameter declaration.Often parameters have default
values. Parameters with default values can be omitted in the attribute declaration. It is possible to declare
several attributes for the same global variable.

@attribute1(par = value)
@attribute2(par1 = value1, par2 = value2)
global some-variable

SPARK-PL: Attributes
and User Interface

2

1.2. @chart attribute
This attribute tells that the value of a global variable should be plotted. Parameter 'name' with string value
specifies the name of a chart window in the user interface. The default value equals to the name of a global
variable. Parameter 'label' specifies the label of the variable in the plot (the default value is variable's
name). Several variables are plotted in the same chart if they have the same 'name' parameter. Parameter
'interval' specifies how often the value of a variable will be read for plotting. The default value is 1.

; Plot variable 'data' each 2 simulation steps
@chart(name = "Data", interval = 2)
global data : number

; Plot variable 'data2' each simulation step.
; Chart's name will be "data2".
@chart()
global data2 : number

This attribute can be applied only to numerical variables.

1.3. @parameter attribute
This attribute tells that a global variable is a parameter in a SPARK model. It means that its value can
be changed during a model simulation process manually by a user. Parameter 'name' gives the name of a
parameter in the user interface. The default value is variable's name. Parameter 'min' specifies the minimum
value of a parameter (default 0). Parameter 'max' specifies the maximum value of a parameter (default 10).
Parameter 'step' specifies the adjustment step for a parameter (default 0.1). Parameter 'default' specifies
the initial value of a parameter.

@parameter(name = "Data", default = 50, min = 0, max = 100, step = 2)
global data : number

This attribute can also be applied to boolean variables.

@parameter(name = "Flag", default = true)
global model-flag : boolean

Do not initialize global variables which has the parameter attribute. Use 'default' parameter instead.
Consider an example

@parameter(name = "Data", min = 0, max = 100, step = 2)
global data = 50 : number

In this example, the variable 'data' will be always initialized with the value 50 every time the 'setup' method
of a model is called. Very often it is not a desired behavior especially when some parameters control the
initialization process.

1.4. @dataset parameter
If you want to collect values of some variable during a simulation process, then use '@dataset' attribute.
Every global variable with that attribute will be added to the model data set, and this data set can be saved

SPARK-PL: Attributes
and User Interface

3

at any time during a simulation process. There is only one parameter for '@dataset' attribute: name of a
variable in the data set. As always, the default value is variable's name itself.

; Parentheses can be omitted
@chart
@dataset(name = "Data")
global data : number

; Even parameters can be added to the data set.
; In that case all changes of the parameter will be saved.
@parameter
@dataset
global parameter : number

1.5. @external attribute
This attribute is applied to methods declared in a model type. Methods with this attribute will be available
in the user interface. That is, if there are methods with the '@external' attribute in a model, then in the user
interface a window 'Methods' will appear. This window will contain buttons with names of all methods
declared with the '@external' attribute. A user can click on these buttons to call methods manually at any
time during (or before) a simulation. Only methods without parameters can have this attribute. There is
only one parameter 'name' with the default value equals to the method's name.

; Only methods inside a model type can be declared
; with the @external attribute
model Model

@external(name = "Do Something")
to do-something
 ; do something
end

1.6. @step attribute
The attribute '@step' can be applied to declarations of agent types. It specifies the order in which agents
make their steps. It has two parameters: 'priority' and 'time'. Both parameters are optional. The default
value of 'priority' is 1000, the default value of time is "1". Note that the priority is a number, and the time
is a string.

To understand the '@step' attribute, it is required to understand how agents make their steps in SPARK.
Any agent has a type. Agents of the same type always make their steps in the same order they were created.
That is, if you have two agents of the same type, then one which was created first is moving first each
simulation step. The only question is how agents of distinct types are scheduled to make steps during each
simulation step (or during each tick because one simulation step equals to one tick).

Each agent type has a special numerical value: priority. This number can range from 1 to 1000. The priority
specifies in which order agents of distinct types perform their actions. If the priority of one type is less
(as a number) than the priority of another type, then agents of the former type will move before agents
of the later type. If two types have the same priority then the names of types will be compared and the
first type in the alphabetical order will get the right of the first move (agents of that type will move first).
As mentioned above, by default the priority is 1000 for all agent types. It means, that if priorities are not

SPARK-PL: Attributes
and User Interface

4

specified explicitly (using the '@step' attribute), then agents make their turns according to the lexicographic
ordering of their type names. Consider several examples.

@step(priority = 1)
agent Virus : SpaceAgent

@step(priority = 2)
agent Macrophage : SpaceAgent

In this example, agents of type 'Virus' will act before agents of type 'Macrophage' because priorities are
specified explicitly and 1 < 2.

@step(priority = 1)
agent Virus : SpaceAgent

@step(priority = 1)
agent Macrophage : SpaceAgent

In this example, agents of type 'Macrophage' will act first because they have the same priority as viruses
but in the alphabetical ordering 'Macrophage' goes first.

@step(priority = 10)
agent Virus : SpaceAgent

agent Macrophage : SpaceAgent

In this example, agents of type 'Virus' will act first because the priority is not specified for macrophages,
so they get the lowest priority (1000) by default.

Consider one more example which shows that the order in which agents make their steps can be very
important.

model TestModel

space GridSpace -10 10 -10 10 false false

to setup
 ; Create several agents of type 'Agent1'
 ask create Agent1 10
 [
 set-random-position

 ; Create agents of type 'Agent2' at the same positions as
 ; agents of type 'Agent1'
 hatch-one Agent2
]
end

; Agent1
agent Agent1 : SpaceAgent

SPARK-PL: Attributes
and User Interface

5

to step
 ; Kill all agents of type 'Agent2' at my position
 kill agents-here Agent2
end

; Agent2
agent Agent2 : SpaceAgent

to step
 ; Kill all agents of type 'Agent1' at my position
 kill agents-here Agent1
end

Who will survive in the example above? Agents of type 'Agent1' will survive because they have the right
of the first move since 'Agent1' < 'Agent2' in the lexicographic ordering. But the order of steps of agents
can be easily altered using the '@step' attribute. If we had something like

@step(priority = 2)
agent Agent1 : SpaceAgent
;...

@step(priority = 1)
agent Agent2 : SpaceAgent
;...

then agents of type 'Agent2' would survive.

Now, let's look at the second parameter of the '@step' attribute which is called 'time'. It was mentioned
before, that agents make their steps each tick. In general, it is not true. In fact, agents can skip some ticks or
even make several steps during one tick. Ticks measure the number of simulation steps. Each simulation
step has a time value which is required to finish a step. This time value is measured in abstract time units.
By default, each step requires exactly one time unit. This value can be altered with the '@tick' attribute
(see below). All agent types also have time values associated with them. This time value measures the
amount of time which should pass between two consecutive steps of any agent of a given type. By default,
this time is one unit. Since the default tick time is also one, it follows that by default each agent moves
exactly once each tick (the amount of time passed between ticks is 1, and each agent waits for 1 time unit
before next step).

The 'time' parameter of the '@step' attributes specifies how long agents of a given type wait before making
next steps. This parameter is not an integer number, it is a rational number. Fractional values can be
assigned. For instance, the following time values are possible: "1", "1/2", "1/3", "4/3", "5", etc. Note that
all values should be quoted. If the tick time is "1" and for some agent type the time value is "1/3", then
agents of that type will move three times during each simulation step. If the time value is "3/2" for another
type, then agents of that type will move during second, third, fifth, sixth ticks, etc.

Ticks in SPARK are discrete but time is continuous. Ticks partition the time line into discrete intervals of
the same length. Agents always make their steps at specific time points. An agent with time value "1/2"
will move at time points "1/2", "1", "3/2", "2", etc. The first two time points are in the first tick interval,
the next two points ("3/2" and "2") are in the second tick interval, etc. Consider the following example.
Assume that we have two agents of distinct types with time values "1/2" and "1/3". The first agent will act
at time points "1/2", "1", "3/2", "2", etc. The second agent will move at time points "1/3", "2/3", "1", "4/3",
"5/3", "2", etc. The priorities of agents will be compared only when they move at the same time point, i.e. at
the points "1", "2", etc. For all other time points only one agent is moving, so there are no priority conflicts.

SPARK-PL: Attributes
and User Interface

6

Often it is simpler to control the action time of agents explicitly using the current tick value which is passed
to the 'step' method of each agent.

1.7. @tick attribute
This attributes specifies the amount of time for each simulation step (tick). The only parameter is 'time'.
This attribute should be applied to a model declaration.

@tick(time = "1/2")
model TestModel

space StandardSpace -5 10 -2 2 true false

to setup
 create-one SlowAgent
 create-one FastAgent
end

; Slow agents will move one time each 4 ticks
@step(time = "2")
agent SlowAgent : SpaceAgent

to create
 color = red
 move-to [-5,1,0]
end

to step
 ; Make one step to the right
 move [1,0,0]
end

; Fast agents will move two times each tick
@step(time = "1/4")
agent FastAgent : SpaceAgent

to create
 color = green
 move-to [-5, -1, 0]
end

to step
 ; Make one step to the right
 move [1, 0, 0]
end

1.8. @observer attribute
This attribute is applied to a model declaration. It has two parameters: 'observer' and 'mode'. The
'observer' parameter specifies the name of an observer implementation which will be used for a model.
There are several available implementations of observers in SPARK. Right now, there is one fully

SPARK-PL: Attributes
and User Interface

7

supported observer implementation (called "Observer1") and two experimental observers ("Observer2"
and "ObserverParallel").

The parameter 'mode' specifies the execution mode for a model. There are two execution modes for the
default observer ("Observer1"): "serial" and "concurrent". "ObserverParallel" has an additional mode:
"parallel" which is similar to the "concurrent" mode and will not be discussed here (a parallelized version
of SPARK is under development).

The default execution mode is the "serial" mode. It is a usual execution mode when all actions of agents
have an immediate effect. It means, that, for example, a newly created agent will be immediately added to
the list of existing agents and will be visible for all other agents as soon as it was created.

In the "concurrent" mode several actions are not performed immediately, but they are postponed until all
agents finish their steps. Actions that are postponed are the following: creation of new agents ('create',
'create-one', 'hatch', 'hatch-one', etc.), deletion of existing agents ('die', 'kill'), changing values of data layers
('add-value', 'add-value-here', 'set-value', 'set-value-here', etc.), moving agents in a space ('move', 'move-
to', etc.). The main feature of the "concurrent" mode is that all agents during a simulation step see the same
environment (surrounding agents, values of data layers) regardless of the order of their steps. There are
several restrictions for using the "concurrent" mode. The basic rule is that agents should not modify values
of fields and call methods of other agents directly. Instead, agents need to use data layers and spaces for
interacting with each other.

Consider an example.

@observer(mode = "concurrent")
model ConcurrentModel

space GridSpace -10 10 -10 10 false false

global data : grid

to setup
 ask create Agent1 10
 [
 set-random-position
 ; Create agents of type 'Agent2' at the same positions
 ; as agents of type 'Agent1'
 hatch-one Agent2
]

 data.set-value 1
end

; Agent1
@step(priority = 1)
agent Agent1 : SpaceAgent

to create
 color = red
 radius = 0.2
end

to step
 ; Decrease the data value by 1

SPARK-PL: Attributes
and User Interface

8

 data.add-value-here -1
end

;Agent2
@step(priority = 2)
agent Agent2 : SpaceAgent

to create
 color = yellow
 radius = 0.5
end

to step [tick]
 ; If the data value is less than 1, then die
 if data.value-here < 1
 [
 die
 exit
]

 ; Increase the data value by 1
 data.add-value-here 1
end

Run this example, and you see that agents of both types will survive. If you change the execution mode
to the "serial" mode, then agents of type 'Agent2' will die because agents of type 'Agent1' move first and
they decrease the value of the data to 0. In the "serial" mode agents of type 'Agent2' see this value 0 and
die. In the "concurrent" mode the value of the data which agents of type 'Agent2' see is still '1' (not '0') so
they survive and increase the value of the data by 1. After agents of both types finish their steps, the value
of the data will be modified (-1 + 1 = 0, so values are not changed at all).

